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1. Introduction

This paper presents a bounding technique for use in implicit enumeration
algorithms for solving the integer linear programming problem with binary
variables. This problem may be stated as follows,

maximize X, -jzl chJ ’
subject to
n
(») Rty BelLfio.m
ye1 g i

'j = Qorl, (3= 3. 2,600

The main assumptions used by this technique are (1) the linear programming

relaxation of (P),

n
maximize '0 - I c

X,

gop 33 |

subject to ]

n ’

- j

*) jgl A <b (= L2,...m |
5

Qa2 (e Nliiae) g

possesses a unique optimal solution, (2) the optimal solution to (P.) is not
binary, and (3) a good feasible solution to (P) is available. If (2) does not

hold then the optimal solution to (P.) is also the optimal solution to (P)
and the algorithm would not be required. Assumption (3) may be met by

using one of the many heuristic procedures in the literature [1,4,6,7]. An
alternative to assumption (3) requires that a lower bound on the optimal
objective function value of a related problem (P'), defined in Section 3, be
available.

In what follows we show that "joint" bounds can be obtained on the values
of a subset of the variables by adapting the approach used by the Bound-and-Scan
algorithm [3] in which the variables are restricted to be non-negative integers
rather than binary. In addition we give good indications that these bounds may
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be used efficiently. Finally, a class of problems particularly well-suited

to this bounding procedure is specified.

2. Conceptual Outline of the Bounding Technique

This technique is motivated by the following considerations. In an
implicit enumeration algorithm the goal (s to quickly eliminate large subsets
of the 2" possible combinations of values for the variables by various tests.
Having a bound on the objective function value of the optimal solution provides one
such test since constraining feasible points to yield a better objective function
value greatly decreases the size of the feasible region. Also, this new con-
straint assures that any new feasible solution will decrease the size of the
feasible region even further. Moreover, if we can obtain a representation for a
group of variables that (1) allows us to fix the values of some of the variables
in an optimal solution to (P) and (2) yields "joint" bounds on them which allow
systematic generation of all relevant combinations of their values, we will have
eliminated even more of the 2n combinations. PFurther, i{ the number of
variables in this group is large as a function of n and we use the "joint” bounds
in a computationally frugal way, additional time savings will be achieved as a
result of having only a small number of variables to deal with {n another manner.
The technique presented here seeks to take advantage of these ideas.

Consider the region determined by the constraints that are blndlngl in the
optimal solution to (Pl). after making a change of variables (x' =« 1-x ) for

i i

those variables, xj. whose complements, (1 - xj). were nonbasic in this solution

(5, pp. 659-662]. In additfon, require that the value of the objective function

Here we exclude constraints that are binding due to degeneracy. Hence, the

binding constraints are those constraints f a4% <b, @ =12,...,m) whose
=1
slack variables are nonbasic in the optimal solution to (P.). and those non-

negativity constraints that correspond, after the change of variables, to nonbasic

variables in this solution.
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not be less than the bound generated by the known feasible solution
to (P). The optimal solution to (P) clearly lies in this region.
Identify the extreme points of this region, and represent each feasible point
(as defined by this region) as a convex combination of these extreme points;
then yse the remaining constraints to perhaps eliminate some of these convex
combinations from further consideration. This provides a convenient way of
identifying the relevant combinations of values for the variables that were
nonbasic, at least after the change of variables, in the optimal solution to
(PR)' Each time a relevant set of values is determined we exit from this
technique to the underlying algorithm to see if this partial set of values for
the xj can yield a completion which satisfies all the constraints of (P). If we
find such a feasible solution it yields a new lower bound on the optimal objective
function value of (P). We then seek to identify another relevant set of values
for this same group of variables. Hence, an iteration corresponds to a relevant

set of values for these variables and the algorithm terminates when all such

sets have been considered.

3. Notation and Initialization

This section introduces the notation and terminology that will be used in

what follows. An alternative representation of (P) ({is

maximize X, "&£ x

subject to

Ax

Ia
lor

xj = 0or 1, G ® Lieicyn)
where ¢ isa 1 xn vector, x {san n x 1 vector, b s an m x 1 vector

and A is an mxn matrix. An n x 1 vector x 1is a feasible solution

to (P) 1f it is in the reglon defined by the constraints; it is an optimal
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solution 1f it is foasible and maximizes the objective function value among

all feasible solutions. The value of X, for an optimal solution will be
called the optiual objective function value. If values have been assigned to
only certain of the variables (components of x), this specification of values
will be called a partial solution for these variables. Given a partial solution,
a "completion" is a solution resulting from specification of values for the
remaining variables. An eligible partial solution is one that does not violate

any known bounds on the variables involved, {.e., one that, based on our present

information, could yield a completion that i{s an optimal solution.

The optimal solution to (Pl) may be included in the card input stream or
(PR) may be solved during inftialization if the underlying algorithm is simplex-
- - -
based. In either case, we will denote this solution as x = lul.....xﬂllr and

L -
its objective function value as x, = ¢ x . Also we define

PN )
J‘- (jl:j is basic!,

e *
3o " Uilj 0 and xy is nonbasic),
J -{jlx.-l and 1 -x, 1is nonbasic)
1 3 b 2
J" - JOUJI'

5 -
K, - {1/t ¢ {1,...,m} and the 1th constraint i{s binding at x },

K - sl = Ky

We wish to make the following change of variables to define x' €r" for
any x €R".
- €
1 ‘j' it 4 Jl
h ] 'j N otherwise.
This change of variables directly induces the problem

maximize x; = c'x'
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from (P). Note that an optimal solutfon to (P'), x'P*  ie14¢ an optimal
opt

solution, x ", to (P) via
1-:;”‘ o A 38

2P
‘j.opt ' otherwvise .

Henceforth we will direct our attention to solving (P').
For notational convenience it will be assumed that the original indexing

of the x, and l:1 was such that {f n

4 - |J.l. then

B
A (l.....%).
K- {l.....n').

e (%ﬂ.....n).
Ky ® (n'+1.....l).

Finally denote the initial good feasible solution to (P) by 5(') -

[xl'.....x:)T. Now define 5'(') by
P i - ,J(r). 11 J€J
‘ -
3 xj () ’ othervise,
and let 16(') - c'x’ (F). Note that x")(') is a lower bound on the optimal

objective function value of (P').

4. Technique for Bounding (xilj € J"}

Define the n x n matrix A* whose {ith row is

é;, i = l.....n‘

.!'t. t. I\“"l....,n.

vhere e, is the unit n-vector with unity assigned to component {i. Also define

* n
b €R’ whose ith component is




0, i = n’+1.....n.

Now consider the set of points satisfying

(1) Ar !_f__b_.v
(F)

(11) e'x> x5 °-

Since (i) is the set of constraints that are binding on !" (induced by

 (F)
0

objective function value of (P'), any optimal solution to (P') must be in this

x* via the change of variables) and x is a lower bound on the optimal

set. 1f (c'x'* - 5'5'(F)) is small, this set will contain few binary points
and the search for an optimal binary point may not be difficult.

We now seek to find the (n+l) extreme points of the n-simplex defined by
(1) and (41). The first n extreme points are determined by the system of

equations,

) ()

(1)

A s Y S R

(1)

where A(i) is obtained by replacing row 1 of A* by c¢', and b is the

 (F)

vector obtained by replacing component i of b* by x5 . The (n*l)'t
(0)
X

extreme point is = x"* [3, p. 646]. It can be shown that A(t) is

nonsingular (i = 1,...,n) [3, p. 646] and, hence, we have explicitly

2 e @)1 gD 4 e y,...,0).

We wish to represent the feasible points as convex combinations of these

extreme points. To this end define

!(0) !(l) (n)




'
yields such a representation for x via p. x is in the simplex determined

by (1) and (i1) 1if and only if p > 0. For an arbitrary x, P exists by virtue

of the fact that M {s nonsingular [3, pp. 648,649], so

o= (i)

provides the relevant vector @
Fortunately, this representation can be obtained directly without explicitly

" . *
performing a matrix inversion, since A g(j) - b1 for § # 1 (by definition

_‘
(1)

of AN ud B 19 200,00, 00

Therefore,

*
b

By = Moty
5

and, similarly,
b x'(')
2 0
4 SRERRORT | R

2Ol

Solving (P') has now been reduced to finding those x with p > 0 which
satisfy the constraints of (P') that are not binding on x'* and identifying
the one which maximizes c'x.

It can be shown that each element of (x,\j € J') has the property that it

has value zero at all of the extreme points of our n-simplex except one, where




it has a strictly positive value. [n particular, x 3, for each § €

J ¥
This follows from Lemma 3 [3, p. 646), which for completeness is restated here.

Lemma: Under the assumptions of Section 1, g_“) (1 = 0,...,n) satisfies con-

stratnts (1) and (11). Furthermore, A, 'x") < b " for 1= 1,...,0 and
E._—(O) > x[.)(r) ;
Hence, for | € JN g
b k" A .:
0y o2
b A Z
- Lo
%)
This result, combined with the fact that Po increases as the best known

objective function value of (P') increases, yields the following theorem
{3, p. 652].
Theorem: A necessary condition for l!n.ﬂ.....xnlr to be an eligible partial

solution to (P') for the variables whose indices are in J is that

N
n x
B
<1=~p
() - Q"
j-n'ﬂ xy
where oo' is the value of ?o for the current best feasible solution to

r'), 5_' - [xl'.....:n'lT (with objective function value xo').

This leads immediately to the following corollary.

Corollary: If xj(j) <1 where j € J.. then x; = 0 in any optimal solution

3
to (P').
Proof : x’(” < 1 dimplies that llxj(j) > 1, since :J(” > 0. Hence, pj >3
when xj = ] and this partial solution for 'j is not eligible.

Thus we may set xi Z 0 for those j where :j(j) < 1. For notational

convenience let this occur for § = ny + 1.....:0. and our necessary condition
is now reduced to
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J-uo-l»l xj

Thus, by calculating lli(J) for = u0+1.....n once at the outset and

updating P, whenever a new feasible solution to (P') is found, a single
addition and comparison are needed to check whether a current partial solution
for these variables remains eligible {f a particular value is increased from zero
to one. Hence, it is simple to generate all the eligible partial solutions one
at a time, stopping each time to explore its completions using the underlying
algorithm.

A possible enumeration scheme is initiated by starting at [x .....xnl‘r -0

+1
Each subsequent partial solution is obtained by first searching the set

5\ » ‘ - L
no+1 ng u0+2
« 0 and xq = 1 and checking the necessary condition for eligibilicy. If

{x ceeaX }  for the first zero value, X and then setting x =

x

q-1
this new partial solution is not eligible, again search for the first zero value,
. ,.. = x

xp. and set x = 0 and xp = 1 and check for eligibility, etc.

no+ 1

When there does not exist a zero~valued variable in |

p-1
.no+1"""n } the
eligible partial soluticns have been exhausted and the algorithm terminates.

5. Computational Considerations

The bounding technique presented in the preceding section has not yet been
tested for computational efficiency. However, we discuss below some indications
that it will be efficient, and then consider which kinds of problems can best
take advantage of {it.

It was mentioned in Section 4 that a small value of (c'x'* -

a key to the efficiency of the technique. Several heuristic procedures for
obtaining 5'(') have been tested and shown to give good results [9], so a

relatively small value of the above seems to be a reasonable expectation. Such
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3 uhich

a value also tends to yield relatively small values for the x

]
greatly reduces the number of partial solutions that are eligible. For example,

(6 )}
J 0

solutions grows only linearly with (n - ao). whereas this number could grow

(3
b

if 1<¢<xw <2 for all §j =n_ + 1,...,n, then the number of eligible partial

essentially exponentially {if the x are sufficiently large.
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In {dentifying the extreme points ;(1).-...g(°) it is not really

(t))-l (1)

necessary to find the (A or even to construct the A (or, in fact,

A*) in a simplex-based code. Beginning with the inverse of the final basis
matrix for (P.) (recalling that the change of variables does not affect the basic

columns of A), the extreme points may be computed by performing a succession of

' (F)
0

via the change of variables), introducing its slack variable as the additional

pivots. First append the constraint c¢'x' > x to (P.‘) (induced by (r)
basic variable in the optimal solution. Now successively introduce each nonbasic
variable (x) : § € JH) into the basis while removing the variable that was
introduced into the preceding basis, The first n components of the resulting
n basic solutions are the desired extreme points.

An explicit representation for the Py has already been given, obviating

the need for finding H‘l or even constructing M.

Hence, thought the theory involved in arriving at this approach is rather

involved, the only additional storage (beyond that of the underlying algorithm)

E(i)

is (1 =0,...40), oo'. l/xj(J)(j-noﬁl.....n). Ngs and a vector indicating

which § are in J,. The latter is needed to deal with the required change of

1
variables. The added computation involves the change of variables, the addition
of the constraint c¢'x' > 16(') to (P.'). n pivots to find 5(l).....g(“).

the computation of l/xj(’)(j-no+l.....n) and then one addition and comparison
for each partial solution i{n the enumeration scheme delineated in the previous
section.

These modest computational and storage requirements suggest that we should
usually be able to efficiently investigate a relatively large number of variables
with this bounding technique. In fact, a similar technique embedded in Hillier's
Bound-and-Scan algorithm for the general integer linear programming problem has

proven to be quite efficient under computational testing [3].

e P e TR e T e A g
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We know that Ny the number of variables that are not handled by this

technique, is bounded above by =, the number of functional constraints. This
result follows from Weingartner's proof that at most = of the original variables
can be basic i{n a solution to (P) [8, pp. 35-37]. Therefore, the bounding technique
seems particularly promising for problems where = 1is small, since relatively

few variables would then need to be handled by the underlying algorithm,

In summary, in a simplex-based i{mplicit enumeration procedure to solve (P),
the use of this bounding technique for problems where the number of constraints
is small in comparison to the number of variables seems very promising computa~
tionally. It will be implemented and tested in the near future and the results

repoiied.
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ABSTRACT

We present a bounding technique for use in fmplicit enumeration algorithms

for solving the integer linear programming problem with binary variables. The

main assumptions used by this technique are (&f‘thc associated linear program,
obtained by dropping the integrality constraints on the variables, possesses a
unique optimal solution, (R)Ithtl optimal solution is not binary, and (3) a good
feasible solution to the original problem is available. An alternative to

assumption (3) which is weaker is also presented.
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We show that"ﬁotnt"bounds can be obtained on the values of a subset of
the variables. In addition we give an efficient method to implement this

bounding technique. Finally, a class of problems particularly well-suited to

this bounding procedure is -pcctftod.q;_____-~\
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